
DIFFRACTION OF LIGHT

INTRODUCTION

When light from a narrow linear slit is incident on the sharp edge of an obstacle, it 
will be found that there is illumination to some extent within the geometrical shadow of the 
obstacle. This shows that light can bend round an obstacle. All phenomena like this which 
are produced when the incident wavefront is somehow limited are called diffraction of light. 

When waves encounter  obstacles  (or openings),  they bend round the edges of the
obstacles, if the dimensions of the obstacles are comparable to the wavelength of the waves.
The bending of waves around the edges of an obstacle is called diffraction.

Diffraction of Light: If an opaque obstacle (or aperture) be placed between a source of
light and a screen, a sufficiently distinct shadow (or an illuminated region) is obtained on the
screen. This shows that light travels approximately in straight lines. If, however, the size of
the obstacle or the aperture is small (comparable to the wavelength of light), then there is a
departure from straight-line propagation, and the light bends round the corners of the obstacle
or  the  aperture,  and  enters  the  geometrical  shadow.  This  bending  of  light  is  called
‘diffraction.’ As a result of diffraction, the edges of the shadow (or illuminated region) are
not sharp, but the intensity is distributed in a certain way depending upon the nature of the
obstacle or the aperture.

Radio waves diffract around building, but not light waves. For noticeable diffraction
of waves, their wavelength should be of the order of the size of the obstacle. The radio waves
have wavelengths of the order of the size of the walls and windows of buildings (= 10-1 — 104

m) and so they are easily diffracted. On the other hand, the wavelength of light waves (= 10-6

m) is too small to be diffracted around buildings.

FRESNEL AND FRAUNHOFFER TYPES OF DIFFRACTION:

The diffraction  phenomena are  broadly  classified  into  two types:  Fresnel  diffraction  and
Fraunhoffer diffraction.

1.  Fresnel  diffraction:  In this  type of diffraction,  the source of light  and the screen are
effectively at finite distances from the obstacle (Fig. a). Observation of Fresnel diffraction
phenomenon does not require any lenses. The incident wave front is not planar. As a result,
the phase of secondary wavelets is not the same at all points in the plane of the obstacle. The
resultant  amplitude  at  any point  of  the  screen  is  obtained  by the  mutual  interference  of
secondary  wavelets  from  different  elements  of  unblocked  portions  of  wave  front.  It  is
experimentally simple but the analysis proves to be very complex.

2. Fraunhoffer diffraction: In this type of diffraction, the source of light and the screen are
effectively  at  infinite  distances  from the  obstacle.  Fraunhoffer  diffraction  pattern  can  be
easily observed in practice. The conditions required for Fraunhoffer diffraction are achieved
by using two convex lenses, one to make the light from the source parallel and the other to
focus the light after diffraction on to the screen (Fig. b). The diffraction is thus produced due
to interfere between parallel rays. The incident wave front as such is plane and the secondary



wavelets which originates from the unblocked portions of the wave front, are in the same
phase at every point in the obstacle. This problem is simple to handle mathematically because
the rays are incoming light is rendered parallel with a lens and diffracted beam is focused on
another lens.

The above distinction creates an impression that a plane wavefront is essential for
Fraunhofer diffraction. This is, however, not necessary. Fraunhoffer diffraction pattern may
be  obtained  even  with  spherical  or  cylindrical  wavefronts.  As  a  matter  of  fact,  in
Fraunhofer’s  diffraction,  the  diffraction  pattern  is  an  image  of  the  source  modified  by
diffraction at the diffracting obstacle or the aperture. (In Fresnel’s diffraction, the pattern is
a shadow of the diffracting obstacle or the aperture modified, by diffraction effects). Hence
the  essential  requirement  for  the  Fraunhofer’s  diffraction  is  that  the  pattern  must  be
observed in  the plane which is  conjugate  to the  plane in which  the source of  light  lies.
Fraunhofer’s diffraction is a limiting case of the more general Fresnel’s diffraction.

 Difference between Interference and Diffraction 

In the phenomenon of interference,  the interference occurs between waves starting
from two (or more, but finite in number of coherent sources. In diffraction, on the other hand,
the interference occurs between the secondary wavelets starting from different points, infinite
in number, of the same wave. However, both are superposition effects and often both are
present simultaneously, as in Young’s experiment. The interference and diffraction patterns
differ in the following respects:

(I)  In  an  interference  pattern  the  minima  are  usually  almost  perfectly  dark  while  in  a
diffraction pattern they are not so. 

(ii) In an interference pattern all the maxima are of same intensity but not so in the diffraction
pattern. 

(iii)  The  interference  fringes  are  usually  equally-spaced  (although  not  always).  The
diffraction fringes are never equally-spaced.

The effect is found to be significant when the dimension of the diffracting element 
becomes comparable with the wavelength of light.

Fresnel gave a satisfactory explanation of this phenomenon by using Huygen’s 
Principle in conjunction with the principle of superposition. According to Huygens’s 
Principle each point on the wavefront acts as a source of secondary wave. The mutual 
interference of these secondary waves derived from a particular wavefront, produces the 
phenomenon of diffraction. Thus interference effect is due to the superposition of two distinct
waves coming from two coherent sources while diffraction is the effect of superposition of 
the secondary waves coming from the different parts of the same wavefront.

All optical instruments use only a limited portion of the incident wavefront and hence 
some diffraction effects are always present in the image. Diffraction effects are accordingly 
of great importance in the detailed understanding of optical devices.



FRESNEL’S HALF PERIOD ZONES OR STRIPS

To obtain the intensity at a point due to a wavefront, Fresnel divide the wavefront into
few  concentric  circular  zones  or  strips  in  such  a  way  that  the  light  coming  from  the
successive half period zones or strips meet at the point in opposite phase i.e. phase difference

of 2


. These zones or strips are called Half Period Zones or Strips.

*******  The lights coming from successive zones or strips meet at  the point in opposite
phase.  This phase difference is equal to the change in phase difference in half  of a time
period (T). That is why it is called Half Period Zones or Strips.************* 

CONSTRUCTION:

Let  ABCD  be  the  plane  wavefront.  P  is  an  external  point  at  a  distance  ‘b’
perpendicular  to  the  wavefront.  To  find  the  resultant  intensity  at  ‘P’  due  to  the  whole
wavefront,  few  concentric  spheres  are  drawn  taking  ‘P’  as  centre  and

, / 2, 2. / 2...............b b b   etc as radii (  is wavelength of the light). These spheres cut

out  the  wavefront  into  concentric  circular  areas  of  radii  1, 2, 3............OM OM OM
on  the

wavefront. The central circular region is called first half period zone. The region between the
first and the second circular region is called second half period zone and so on.

RADIUS OF HALF PERIOD ZONE

Radius of the nth half period zone,
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Thus the radii of half period zones are proportional to roots of natural numbers. In

other words, radii of first, second, third etc half period zones have radii in ratio 1 , 2 , 3

etc.

AREA OF HALF PERIOD ZONES:

Area of the nth half period zone is
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 Thus the area of the half period zone is constant and does not depend on the order of
the zone. Each zone has equal area. The area is 

i) directly proportional to wavelength ( )

ii) directly proportional to distance (b) of the wavefront from the point (P)

 



ZONE PLATE

A zone plate is specially designed optical device based on the Fresnel theory of half
period zone i.e. constructing concentric circular zones such that light from alternate zones are
cut off. Zone plate has a converging property.

CONSTRUCTION:

To construct a zone plate concentric circles of radii proportional to integral no. are
drawn in a white paper. The odd numbered zones are blackened and a reduced photograph is
taken. In developed negative the odd zones become transparent to incident light and even
numbered zones will cut the light off.

Uses: Zone plate has lensing properties and can be used as converging lens. The correctness
of Fresnel’s method of dividing the wavefront into half period zones can be verified with the
help of a zone plate.

THEORY: 

The light from successive half period zones of a wavefront meet at a point in opposite
phases. Thus the resultant intensity at the point due to the whole wavefront reduces and is
equal to one fourth of intensity due to the first half period zone. If the alternate (odd or even
numbered) zones are made opaque, then light coming from the transparent zones meet at the
same phase and resultant intensity increases.

RESULTANT AMPLITUDE AT A POINT DUE TO THE WHOLE WAVEFRONT:

 Though the area of each zone is same, the obliquity factor increases with increase in

order no. of the zones. Thus amplitude at point ‘P’ decreases gradually.Let 1 2 3, , ......a a a  etc

are amplitude at ‘P’ due to first, second, third etc. Half period zones, then  1 2 3......a a a 

since each zone is out of phase by phase   to its neighbouring zone, the resultant amplitude
at ‘P’ due to all zones at any instant
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Therefore, resultant amplitude at ‘P’
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i.e. resultant intensity due to whole wavefront is only one fourth that due to the first zone.

LENSING PROPERTY OF ZONE PLATE:

Let XY be a section of zone plate where 1 2 3, , ............OM OM OM  etc are equal to radii

1 2 3, , .............r r r  etc of the first, second, third etc half period zones. S is source of light at

distance ‘ a ’ and ‘P’ is position of the bright image at distance ‘ b ’. The position of the plate

is such that path difference increases from one zone to next zone by 2
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Applying sign convention
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Eqn (ii) is equivalent to lens formula  
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 with ‘a’ and ‘b’ as object distance
and image distance. Thus the zone plate acts as a converging lens. A zone plate has a no. of
foci which depend on the numbers of zone used as well as wavelength of light used.

Multiple foci of zone plate:



Zone plate has multiple foci depending on the numbers of zone used. The bright focus

is at the distance 
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As the point of observation is approached, the area of zone diminishes. When the
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second and third zone.  Thus brighter  image is  formed with lesser  intensity.  For point  at
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 , the clear zone contains first, second, third, fourth and fifth zone

resulting bright image at the points. Thus numbers of foci are obtained.

Differences between convex lenses and zone plate:

1.  For  a  given  wavelength  of  light,  a  convex  lens  has  one  focus  whereas  a  zone  plate

possesses multiple foci. The brightest image is obtained at
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nr  is the radius of n-th half period zone. Other bright images with decreasing intensity are

obtained at 
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2. Light from the consecutive transparent zones of the zone plate arrives at the image point
after one complete period of wave, whereas in case of lens light reaches the image point in
the same phase.

3. The focal length of the zone plate decreases as wavelength increases but in case of lens
focal length increases with increase in wave length. When white light is used red image is
formed nearer to the zone plate but away from the lens.

4. Thickness of the lens is not uniform but thickness of the zone plate is uniform.



FRESNEL DIFFRACTION

Diffraction at a straight edge:

Let  A  be  straight  edge  of  an  opaque  obstacle  ‘AB’.  It  is

illuminated by monochromatic light of wavelength   coming from source S. The diffraction 

pattern is observed at screen

Explanation:

Let PAQ be cylindrical wavefront from linear source ‘S’. With respect to point ‘P1’, R
is the pole of the wavefront. Similarly ‘A’ is the pole of the wavefront w.r.t. ‘Po’. Both halves
of the wavefront are divided into numbers of half period elements.

For the point ’Po’, the upper half AP of the wavefront is exposed while lower half
‘AB’  is  completely  obstructed.  The  resultant  amplitude  is  therefore  a1/2,  where  a1 is
amplitude due to central element. As one goes below Po, the pole of the wavefront shifts
towards Q and gradually, the first, the first two, the first three half period elements of upper
half along with the complete lower half are obstructed. Therefore, at different points below
‘Po’ the resultant  displacements  are  -a2/2,  a3/2,  -a4/2...etc.  since a4<a3<a2<a1,  the intensity
rapidly decreases.

On the other hand, as one moves above Po, the pole shifts towards ‘P’ and one after
another, the first, the first two, the first three etc. Half period elements of lower half will be
exposed along  with  the  complete  upper  half.  The  illumination  at  a  point  P1 depends  on
whether the no. of exposed element on lower half is odd or even. If the no. is odd, the point



will be bright or if even it is dark. Thus alternate dark and bright fringes are observed above
‘P1’

The no of half period elements in ‘AR’ depends on path difference AP1-RP1
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For minimum intensity at 1P , 

                                       

2

2 ( )
mx a

m
b a b




                                   

(2 ( )
m

b a b m
x

a


 



                                     
2 2

1 2m mx x k       where 

( )b a b
k

a




                                  
1

1

2
m m

m m

k
x x

x x



  


                                                      m

k

x


This gives the expression for m-th fringe width.

The intensity distribution in case of diffraction by straight edge is shown in fig.

Diffraction at circular aperture:

Let PQ is the small circular aperture. S is a point source and O is a point on the screen
on the axial line SLO. MN is the geometrical image of PQ on the screen.

The intensity at ‘O’ depends on the number of half period zones contained by the
aperture w.r.t. to ‘O’. If there is even no. of zones then they mutually cancel each other in
pairs and intensity will be less. On the other hand if the aperture contains odd no. of zones,
intensity at ‘O’ will be maximum due to the unpaired zone. If the screen is moved towards
the aperture, the distance ‘LO’ changes and the aperture contains alternately odd and even
number of zones with respect to ‘O’ and hence the point ‘O’ will be alternately dark and
bright.



Intensity at an axial point:

Let,
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Keeping b ,  and r  constant when ‘ a ’ is changed, ‘ m ’ becomes alternately odd and
even and the point ‘O’ will be alternately bright and dark.

For parallel rays b 

                                          

2r
a

m
 

i.e.  the first  bright  and the second bright  will  be obtained at  

2

1

r
a




and  

2

2 3

r
a




respectively.

Therefore separation between two successive bright spot is

2 2 2

1 2

2

3 3

r r r
a a

  
   

Similarly first and the second dark are formed at 



2 2 2
/

1 2 4 4

r r r
a

  
  

Intensity at a point within geometrical image

The intensity at a point ‘R1’ within geometrical image except axial point becomes 
maximum and minimum according as odd or even number of half period zones are remaining
in each half of the exposed wave front above and below the new pole.

Intensity at a point beyond geometrical image

Let ‘R’ be a point beyond geometrical image and at a distance ‘ mx ’ from ‘O’

Path difference of ‘R’ from ‘P’ and ‘Q’

                                   

2 2 2 2

2 2

( ) ( )

( ) ( )1 1

2 2
2

m m

m m

m

l QR PR

a x r a x r

x r x r
a a

a a
rx

a

 

     

 
   



For minimum intensity at ‘R’ 

                                  

2

2

2

m

m

rx
m

a
am

x
r







 

And for maximum intensity
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Eqn (6) and (7) respectively give the distances or radii of dark and bright rings from the 
centre ‘O’.

The objective of a telescope consists of an achromatic  convex lens and a circular
aperture is  fixed in  front  of the lens.  Let  the diameter  of the aperture  be (D=2r).  While
viewing distant objects, the incident wavefront is plane and the diffraction pattern consists of
a bright centre surrounded by dark and bright rings of gradually decreasing intensity. The
radii of the dark rings are given by 
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The radius of the first dark ring is, 
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For an incident plane wavefront, a =f , the focal length of the objective.
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gives the distance of the first secondary minimum from the central  bright maximum.

However, according to Airy’s theory, the radius of the first dark ring is given by
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it is interesting to note that the size of the central image depends on   , the wavelength of

light, f focal length of the lens and , D  diameter of the lens aperture.



FRAUNHOFER DIFFRACTION IN A SINGLE SLIT

Let parallel beam of monochromatic light of wavelength    be incident on a slit S1S2

normally. According to Huygen’s theory every point on the incident wavefront behaves like
an independent source of secondary wavelets. These wavelets are focused on the screen by
convex lens L.

The beams normal to the slit are focussed at point ‘C’ on the screen, producing a

bright fringe there. The beams diffracted at angle ‘ ’ meet the screen at point ‘Q’.

Intensity at point Q:

The phase difference between the light coming from midpoint ‘O’ of the slit and at a
point ‘P’, x distance apart from ‘O’ is
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The resultant intensity at ‘Q’,               . *I y y
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Thus intensity depends on  which in turn depends on angle of diffraction ‘ ’.
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bright fringe is obtained. 

(c) for tan  ,           
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Condition for maxima is tan 



The values of  
 corresponding to the points of intersection of graphs y  and tany 

satisfy the eqn. The values are obtained as 
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 The exact values of  are 0, 1.430 , 2.462 , 3.471 .............

0   represents principal maximum whereas other values give the secondary maxima.

Intensity:

Intensity of principal maximum is
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Intensity of second secondary maximum is
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                                                              and so on.

Thus the secondary  maxima are  very feeble  and their  intensities  fall  rapidly  with
increase in order no.

 The intensity distribution is shown in fig.



Thus the diffraction pattern consists of bright principal maximum in the direction of

the incident  light having alternately minima lie at  , 2 , 3 .........      .  The subsidiary
maxima do not fall exactly midway between two minima but are displaced towards the centre
of the pattern by an amount which decreases with increasing order.

WIDTH OF CENTRAL MAXIMUM:

The angle of diffraction 1  for first minimum on either sides of central maximum is given as 
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Angular with of central maximum is
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 which is inversely proportional to slitwidth(
a ).

What happens if the slit is narrower?

Angular with of central maximum is 
1

2
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
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 which is inversely proportional to slit
width ( a ). When the slit width is narrowed a decreases and the central maximum becomes

wider. When the slit width is as small as the wavelength ( a  ) then the first minimum

occurs at θ=90o, which means the central maximum fills the whole space.



FROUNHOFER DIFFRACTION IN A DOUBLE SLIT

Let parallel beam of monochromatic light of wavelength    be incident on a double

slit normally. Let  a be width of each slit and  b be separation between them. The distance

between any pair of corresponding points of the two slits is d a b  According to Huygen’s
theory  every  point  on  the  incident  wavefront  behaves  like  an  independent  source  of
secondary wavelets. These wavelets are focused on the screen by convex lens L.

The beams normal to the slit are focussed at point ‘C’ on the screen, producing a

bright fringe there. The beams diffracted at angle ‘ ’ meet the screen at point ‘Q’.

Intensity at point Q:

The phase difference between the light coming from midpoint ‘O’ of the slit and at a
point ‘P’, x distance apart from ‘O’ is
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If disturbance at ‘O’ is considered as
i tAe 

, then disturbance at ‘Q’ due to the waves

from P is proportional to 
( )i t lxe  

The disturbance at ‘Q’ due to the diffracting element ‘ dx ’ can be written as

                                   
( )i t lxdy CAe dx 

The disturbance at ‘Q’ due to the double slit
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Thus the resultant intensity depends on two factors

i) 

2

2

sin
oI



 ,which gives diffraction pattern due to a single slit

ii) 
2cos  , which gives interference pattern due to the diffracted light beams from the

two slits.

Condition for minima:

The resultant intensity would be zero when either factor in eqn (6) is zero.

a) the factor 
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sin 0   but 0  . Therefore, m  1, 2, 3......m   

Or   
sina m 

These minima are called diffraction minima.

b) Interference minima are obtained for 
2cos  =0

i.e. (2 1) / 2s    ; 1, 2,3.............s 

or ( )sin (2 1) / 2a b s    



these minima are known as the interference minima.

Condition for maxima:

c) Diffraction maxima due to the factor 
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d)  the  interference  maxima  due  to  the  factor  
2cos  are  obtained  for  p  ,

0, 1, 2, 3......p      

i.e. 
( )sina b p  

The intensity distribution is shown in fig.

Missing order:

If the condition for maxima of interference pattern and minima of diffraction pattern

are  simultaneously  satisfied  for  a  given  value  of    then  the  corresponding  interference
maxima will be missing. In that case
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 should be the ratio of two integers.



For example, if  
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; or a b  then 2p m . Hence 2, 4, 6 etc orders of interference
maxima are absent which corresponds to 1, 2, 3, etc orders of diffraction dark bands. There

will  be  3  interference  maxima  (corresponding  to  p=0,  1 )  in  the  central  diffraction
maximum.

Effect of increasing the slit-width: If we increase the slit-width the envelope of the fringe-
pattern changes so that its central peak is sharper. The fringe-spacing, which depends on slit-
separation,  does  not  change.  Hence  interference  maxima  now  fall  within  the  central
diffraction maximum.

 Effect of increasing the distance between slits: If the slit-width ‘a’ is kept constant and
the  separation  ‘b’  between  them  is  increased,  the  fringes  become  closer  together,  the
envelope of the pattern remaining unchanged. Thus more interference maxima fall within the
central envelope.

Effect of increasing wavelength: On increasing , the envelope becomes broader, and the
fringes move further apart.

DISTINCTION  BETWEEN  SINGLE  SLIT  AND  DOUBLE  SLIT  DIFFRACTION
PATTERNS

The single slit diffraction pattern consists of a central bright maximum with secondary
maxima and minima of gradually decreasing intensity.  The double slit  diffraction  pattern
consists of equally spaced interference maxima and minima with in the central maximum.
The intensity of the central maximum in diffraction pattern due to a double slit is four times
that of the central maximum in the diffraction pattern due to diffraction at a single slit. In the
above arrangement, if one of the slits is covered with opaque screen, the pattern observed is
similar to the one observed with a single slit.

The spacing of diffraction maxima and minima depends on ‘a’, the width of the slit
and the spacing of the interference maxima and minima depends on the value of ‘a’ and ‘b’
where ‘b’ is opaque spacing between the two slits. The intensities of the interference maxima
are not constant and decrease to zero on either side of the central maximum. These maxima
reappear two or three times before the intensity becomes too low to be observed.



DIFFRACTION IN PLANE TRANSMISSION GRATING:

A diffraction grating is an arrangement equivalent to a large number of parallel slits of
equal widths and separated from one another by equal opaque spaces. It is made by ruling a
large number of fine, equidistant and parallel lines on an optically-plane glass plate with a
diamond point. The ruling scattered the light and are effectively opaque while the unrolled
pars transmit light and acts as slits. 

Let parallel beam of monochromatic light of wavelength     be incident on a plane

transmission grating normally. Let  a be width of each slit and  b be width of each opaque
space between the slits. The distance between any pair of corresponding points of the two

slits is d a b   which is called grating element or grating constant According to Huygen’s
theory  every  point  on  the  incident  wavefront  behaves  like  an  independent  source  of
secondary wavelets. These wavelets are focused on the screen by convex lens L.

The beams normal to the slit are focussed at point ‘C’ on the screen, producing a

bright fringe there. The beams diffracted at angle ‘ ’ meet the screen at point ‘Q’.

Intensity at point Q:

The phase difference between the light coming from midpoint ‘O’ of the slit and at a
point ‘P’, x distance apart from ‘O’ is

                                            

2 2
. sinPN x lx

 

 
  

                                           

2 2
. sinPN x lx

 

 
  

                                                              where, 

2
sinl




 

If disturbance at ‘O’ is considered as
i tAe 

, then disturbance at ‘Q’ due to the waves

from P is proportional to 
( )i t lxe  

The disturbance at ‘Q’ due to the diffracting element ‘ dx ’ can be written as



                                   
( )i t lxdy CAe dx 

The disturbance at ‘Q’ due to the double slit
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Thus the resultant intensity depends on two factors
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,which gives diffraction pattern due to a single slit

ii)  
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, which gives interference pattern due to the diffracted light beams
from all  the slits.



PRINCIPAL MAXIMA:

If the slit width ‘a’ is very small and observation is confined to the neighbourhood of 

the central pattern the variation of the factor
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   is small and under this condition 

the maxima will be solely controlled by the factor
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This factor is maximum when m  ; 0, 1, 2, 3......m    
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Thus the intensity of the principal maxima increases as the number of slits ( N ) 

increases, but due to the presence of the factor 
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 , whose value decreases with increase 

of the angle of diffraction    ( ), the intensity of principal maxima decreases with the 
increase in the order number of bands.

Condition for secondary minima and maxima:

The factor 
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 depends on   and for maxima or minima we must have 
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a) Secondary minima:



When sin 0N   but sin 0  then 
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and hence intensity becomes zero (i.e. 

minimum). Thus for minimum N s 
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where s has integral values excepting 0, , 2 ,3N N N etc. as for these values of ‘ s ’, sin 0   
and we obtained principal maxima. Thus it is evident from equ and equ that between two 

consecutive principal maxima there are ( 1)N   minima. Hence there will be ( 2)N   other 
maxima known as secondary maxima between any two adjacent principal maxima.

b) Secondary maxima

The condition cot cotN N  makes
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. Also, it can be showed that this condition 

makes

2
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d  negative. Thus the value of   which satisfy the condition cot cotN N   will 

give the positions of secondary maxima, excepting m  which gives principal maxima.

Intensity of secondary maxima:

For secondary maxima, cot cotN N 
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Hence the intensity of the secondary maxima
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This equation shows that as N  increases the intensity of secondary maxima relative to the 

principal maxima decreases. When N  is very large the secondary maxima becomes very 
weak. This is why secondary maxima are not generally observed with a grating having large
N .  



ABSENT SPECTRA:

For the m th order principal maximum in the direction , we have the condition

                                                    ( )sina b m  

Suppose that the value of a is such that s th order diffraction minimum occurs in the same 
direction then

                                                     sina s 

If these two conditions are satisfied simultaneously then m th order principal maximum will 
be absent from the resulting spectra.

From the above eqns

                                                     

a b m

a s




GHOST LINES: 

In an ideal grating the rulings should be equally spaced. But in practice there remain 
some errors in the rulings. If the error is random the grating gives a continuous background 
illumination. If the error is progressive in nature the spectral lines become sharper in planes 
which are different from the focal plane of the optical system.The most common error is 
periodic in nature. It arises from defects in the driving mechanism of the ruling machine. It 
gives rise to false lines accompanying the principal maxima of ideal grating. These additional
false lines are known as ghost lines.

**Reference book: A Text Book on Light by B. Ghosh & K.G. Mazumdar 


